Chemical elements
    Physical Properties
    Chemical Properties
      Aurous fluoride
      Aurous chloride
      Aurous bromide
      Aurous iodide
      Aurous oxide
      Aurous sulphide
      Aurous thiosulphate
      Aurous Derivatives of Nitrogen
      Aurous cyanide
      Potassium aurothiocyanate
      Ammonia and Aurous Halides
      Gold dichloride
      Gold dibromide
      Gold monoxide
      Gold monosulphide
      Gold monosulphate
      Nitride of Bivalent Gold
      Auric chloride
      Aurichloric Acid
      Auric bromide
      Auribromic Acid
      Auric iodide
      Auri-iodic Acid
      Auric iodate
      Auric hydroxide
      Auric sulphide
      Auric sulphate
      Acid auryl sulphate
      Auric selenide
      Auric selenate
      Auric telluride
      Gold and Nitrogen
      Auric nitrates
      Gold and Phosphorus
      Gold arsenides
      Auric selenide
      Auric antimonide
      Auric cyanide
      Salts of Auricyanic Acid
      Double Salts of Auric thiocyanate
      Gold carbide
      Gold and Silicon
    PDB 1a52-4acl

Aurous thiosulphate, Au2S2O3,3H2S2O3,H2O

This substance is to be regarded as a complex aurothiosulphuric acid. It is prepared by the action of dilute sulphuric acid on the barium salt.

Sodium thiosulphate reacts with a solution of auric chloride to form sodium aurothiosulphate,

Au2S2O3,3Na2S2O3,H2O, or Na3Au(S2O3)2H2O,

colourless, acicular crystals. At 150° to 160° C. it loses water, and at higher temperatures it is decomposed. Hydrogen sulphide and ammonium sulphide precipitate aurous sulphide from its solution, and iodine transforms it into sodium tetrathionate and aurous iodide. In accordance with the presence of a complex anion, hydrochloric acid and sulphuric acid do not precipitate sulphur, a contrast to their action on ordinary thiosulphates. The complexity of the anion is further manifested in the inability of the usual gold reducers to precipitate the metal.

© Copyright 2008-2012 by